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Abstract
We reconstruct the canonical operators pi, qi of the quantum closed Toda chain
in terms of Sklyanin’s separated variables.

PACS numbers: 02.30.Ik, 05.50.+q, 75.10.Jm

1. Introduction

The theory of classical integrable systems relies on two main ingredients. One is group theory
which is used to construct Lax matrices as coadjoint orbits of loop groups, and the second one
is complex analysis of the spectral curve, �, which is used to effectively solve the models.

In fact, once � is given to us, we only need g = genus(�) points on it to reconstruct
everything. The divisor D of these g points is called the dynamical divisor. Its role is
fundamental. For instance, under an integrable flow, the curve � is fixed but the points of D
move on it. The main theorem of integrable systems states that the image of D by the Abel
map, which is a point of the Jacobian of �, moves linearly under such flows. Another very
important property, which has emerged gradually, is that the coordinates of the points of D
form a set of separated variables in the sense of the Hamilton–Jacobi theory [13, 14].

In quantum theory also, these separated variables, known as Sklyanin’s variables, play an
important role [1]. It was recently observed that the quantum commuting Hamiltonians had
a simple and general expression in terms of the Sklyanin variables [12]. Hence, it becomes
natural to set up a quantization procedure of a classical integrable system by using these
variables systematically.

In this paper, as an example, we perform this quantization programme in the case of the
closed Toda chain. We will be able to reconstruct the original quantum Toda variables in
terms of the Sklyanin variables, see equation (23). So, even in this most studied system, the
approach seems powerful enough to provide new results.

But before dealing with the specific example of the Toda chain, it is worth recalling a few
general facts about the classical theory of integrable systems.
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Lax matrices built with the help of coadjoint orbits of loop groups lead to spectral curves
of the very special form [5, 7, 14]

� : R(λ,µ) ≡ R0(λ, µ) +
∑

j

Rj (λ, µ)Hj = 0 (1)

where the Hj are the Poisson commuting Hamiltonians. The coefficients Rj(λ, µ) have a
simple geometrical meaning. It turns out that varying the moduli Hi at λ constant, one can
show that [5]

δµ dλ = holomorphic. (2)

Any basis ωj of holomorphic differentials on � can be presented as

ωj = Nj(λ, µ)

∂µR(λ,µ)
dλ = σj (λ, µ) dλ.

Since

δµ dλ = −
∑

j

Rj (λ, µ)

∂µR(λ,µ)
dλ δHj

we see that the coefficients Rj(λ, µ) are in fact the numerators Nj(λ, µ) of a basis of
holomorphic differentials on �. The great virtue of equation (2) is that it implies that there
are exactly g-independent Hamiltonians because the space of holomorphic differentials is
of dimension g. This is a most welcome fact because the natural candidates for the angle
variables are the g angles on the (complex) Jacobian torus, and so we also need g (complex)
action variables. This counting argument still holds if we generalize equation (2) as follows:

δµ dλ

f (λ, µ)
= holomorphic then

Rj(λ, µ)

∂µR(λ,µ)
= f (λ, µ)σj (λ, µ). (3)

Note that if we consider R̃(λ, µ) = h(λ, µ)R(λ,µ), where h(λ, µ) does not contain dynamical
moduli, we have

R̃j

∂µR̃
= hRj

h∂µR + R∂µh

so that on � the factor h disappears, and the factor f above has an intrinsic meaning.
The g moduli Hi in equation (1) are completely determined if we require that the curve

passes through g points γk = (λk, µk). Indeed we just have to solve the linear system
g∑

j=1

Rj(λk, µk)Hj + R0(λk, µk) = 0 k = 1, . . . , g (4)

whose solution is

H = −B−1V (5)

where

H =



H1

...

Hi

...

Hg


B =



R1(λ1, µ1) · · · Rg(λ1, µ1)

...
...

R1(λi, µi) · · · Rg(λi, µi)

...
...

R1(λg, µg) · · · Rg(λg, µg)


V =



R0(λ1, µ1)

...

R0(λi, µi)

...

R0(λg, µg)


.
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On the 2g complex numbers (λk, µk), we can introduce a non-degenerate Poisson structure

{λk, λk′ } = 0 {λk, µk′ } = p(λk, µk)δkk′ {µk, µk′ } = 0. (6)

We do not need to specify the function p(λ,µ) for the moment. In the case of a spectral curve
of the Lax matrix with a linear bracket in the r-matrix language, it is known that generically
p(λk, µk) = 1. In the case of the quadratic Sklyanin bracket with rational r-matrix, such as
the Toda chain below, we have p(λk, µk) = µk . In the case of a trigonometric r-matrix we
have rather p(λk, µk) = λkµk [9]. By a simple calculation, we prove [10, 12]:

Proposition 1. For any function p(λ,µ) in equation (6), the Hamiltonians defined by
equation (5) are in involution

{Hi,Hj } = 0.

The Hi therefore define integrable flows on the 2g-dimensional phase space equation (6).
There is an interesting relation between the functions p(λ,µ) entering the Poisson bracket,

equation (6), and the function f (λ, µ) in equation (3). We define the angles as the images of
the divisor (λk, µk) by the Abel map:

θj =
∑

k

∫ λk

σj (λ, µ) dλ.

This defines a point on the Jacobian of �.

Proposition 2. Under the above map, the flows generated by the Hamiltonians Hi are linear
on the Jacobian if and only if f (λ, µ) = p(λ,µ).

Proof. We want to show that the velocities ∂ti θj are constant, or

∂ti θj =
∑

k

∂ti λkσj (λk, µk) = Cste
ij .

Indeed, one has

∂ti λk = {Hi, λk} = −{
B−1

il Vl, λk

}
= B−1

ir {Brs, λk}B−1
sl Vl − B−1

il {Vl, λk}
= −B−1

ik [{Bks, λk}Hs + {Vk, λk}]
where, in the last line, we used the separated structure of the matrix B and the vector V .
Explicitly

∂ti λkBkj = B−1
ik Bkj [∂µRs(λk, µk)Hs + ∂µR0(λk, µk)]p(λk, µk)

= B−1
ik Bkj ∂µR(λk, µk)p(λk, µk).

It follows that

∂ti λk

Rj (λk, µk)

p(λk, µk)∂µR(λk, µk)
= B−1

ik Bkj

summing over k gives∑
k

∂ti λk

f (λk, µk)

p(λk, µk)
σj (λk, µk) = δij (7)

which reduces to what we had to prove when f (λ, µ) = p(λ,µ). �

Hence equations (1), (3) do provide us integrable systems and their solutions. The main
question in this approach is to go back from the separated variables (λk, µk) to the ‘original’
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variables, i.e. the ones entering the Lax matrix elements. A Lax matrix is a matrix L(λ)

depending rationally on λ such that

R(λ,µ) = det(L(λ) − µ).

A general strategy to construct it is as follows [3, 14]. First, we determine the size of the matrix
L(λ), by looking at the curve � as a covering of the λ-plane (λ, µ) → λ. The dimension of
the matrix is just the number of sheets of this covering. Let us assume that the curve � is not
ramified at λ = ∞. Call Qi (λ = ∞, ai), i = 1, . . . , N the point above λ = ∞. We can
normalize L(λ) = Diag(a1, a2, . . . , aN) + 0(1/λ) at λ = ∞. To each point P(λ,µ) of the
curve �, not a branch point of the covering (λ, µ) → λ, one can attach the one-dimensional
eigenspace of L(λ) corresponding to the eigenvalue µ. One can show that this extends to an
analytic line bundle on � with the Chern class g + N − 1. The eigenvector 	(P ) at P ∈ �

can be presented as

	(P ) =


1

ψ2(P )
...,

ψN(P )

 [ψi] = Q1 − Qi − D.

The function ψi, i = 2, . . . , N − 1 has a zero at Q1, a pole at Qi and g poles at a divisor
D at finite distance. By the Riemann–Roch theorem, this function exists and is unique for
D generic. So apart from the N − 1 poles at infinity which are fixed, all the important
information is contained in the dynamical divisor D. We identify D with the divisor of the g

points γk = (λk, µk) above and construct the corresponding vector 	(P ). Once this is done,
we consider the N points Pi above λ, and build the matrices

	̂ = (	(P1), . . . , 	(PN)) µ̂ = Diag(µ(P1), . . . , µ(PN)).

The matrix L(λ) is given by

L(λ) = 	̂µ̂	̂−1.

This is independent of the order of the points Pi , and is a rational function of λ.
This method gives a way, in principle, to reconstruct the Lax matrix starting only from

the spectral curve and the dynamical divisor on it, hence returning to the original variables.
Of course, in concrete examples, some of the genericity assumptions made here may have to
be modified, or shortcuts may be available, but the general ideas remain the same.

2. The classical Toda chain

The closed Toda chain is defined by the Hamiltonian [2]

H =
n+1∑
i=1

1

2
p2

i + eqi+1−qi (8)

where we assume that qn+2 ≡ q1, and Poisson bracket

{qi, qj } = 0 {pi, qj } = δij {pi, pj } = 0.

This is an integrable system. We associate with it the Lax matrix as follows. Consider the
2 × 2 matrices

Tj (λ) =
(

λ + pj −eqj

e−qj 0

)



On the quantum inverse problem for the closed Toda chain 307

and construct

T (λ) = T1(λ) · · · T2(λ)Tn+1(λ). (9)

We can write

T (λ) =
(

A(λ) B(λ)

C(λ) D(λ)

)
A(λ)D(λ) − B(λ)C(λ) = 1 (10)

where A(λ) is a polynomial of degree n + 1,D(λ) is of degree n − 1 and B(λ), C(λ) are of
degree n. The spectral curve is defined as usual

det(T (λ) − µ) = 0 ≡ µ + µ−1 − t (λ) = 0 (11)

where

t (λ) = A(λ) + D(λ) = λn+1 +
n∑

j=0

λjHj Hn = P Hn−1 = 1

2
P 2 − H

where P = ∑
i pi , and H is given by equation (8). The n + 1 quantities Hj are conserved.

The curve equation (11) is hyperelliptic. It can be written as

s2 = t2(λ) − 4 with s = 2µ − t (λ) = µ − µ−1. (12)

The polynomial t2(λ) being of degree 2(n + 1), the genus of the curve is g = n. The number
of dynamical moduli is g = n in the centre of mass frame P = 0. In the following we
therefore always consider the system reduced by the translational symmetry. We have

δµ

µ
dλ = δt (λ)

µ − µ−1
dλ = δt (λ)

s
dλ = holomorphic. (13)

Asking that the curve equation (11) passes through the n points (λi, µi), we get n equations

t (λi) = µi + µ−1
i .

Their solution for the n Hamiltonians Hi may be cast conveniently in the form of Lagrange
interpolation formula:

t (λ) = t (0)(λ) + t (1)(λ) (14)

where

t (0)(λ) =
(

λ +
∑

i

λi

)
n∏

i=1

(λ − λi) t (1)(λ) =
∑

i

∏
j �=i

λ − λj

λi − λj

(
µi + µ−1

i

)
. (15)

The polynomial t (0)(λ) is of degree n + 1, vanishes for λ = λi and has no λn term.
We define the Poisson bracket of the separated variables as (in agreement with

equations (6), (13))

{λk, λk′ } = 0 {µk, λk′ } = µkδkk′ {µk, µk′ } = 0.

By the general result of [10, 12] the Hamiltonians Hi obtained as coefficients of the polynomial
t (λ) in equation (15) are in involution. Note that the above Poisson bracket is the one
matching the condition (13) and leads to flows linearizing on the Jacobian of the spectral curve
equation (11).

To proceed, we reconstruct the Lax matrix. The curve equation (11) is a two-sheeted
cover of the λ-plane. For a 2 × 2 matrix of the form of equation (10) the eigenvector is simple

(T (λ) − µ)	 = 0 	 =
(

1

ψ2

)
ψ2 = −A(λ) − µ

B(λ)
.
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The poles of ψ2 at finite distance are above the zeroes λi of B(λ) = 0 which is a polynomial
of degree n. The two points above λi are µ+

i = A(λi), µ
−
i = D(λi) so that ψ2 has a pole only

on the second point. The points of the dynamical divisor are therefore

(λi,D(λi)) B(λi) = 0.

Given the points of the dynamical divisor, we reconstruct A(λ) and B(λ):

B(λ) = b0

n∏
i=1

(λ − λi)

A(λ) =
(

λ +
n∑

i=1

λi

)
n∏

i=1

(λ − λi) +
∑

i

µi

∏n
j �=i (λ − λj )∏n
j �=i (λi − λj )

.

Knowing A(λ) and B(λ) we reconstruct C(λ) and D(λ) by the trace and determinant
conditions. These formulae were the basis of Sklyanin’s work [1] and of Smirnov’s work
[6, 9] (with a different Poisson structure).

Reconstructing the original degrees of freedom of the Toda chain, however, is equivalent
to reconstructing the (n + 1) × (n + 1) Lax matrix:

L(µ) =
∑

i

piEii +
n∑

i=1

e
1
2 (qi+1−qi )(Ei,i+1 + Ei+1,i ) + e

1
2 (q1−qn+1)(µEn+1,1 + µ−1E1,n+1)

where (Eij )kl = δikδjl . This matrix is such that

det(L(µ) − λ) = µ + µ−1 − A(λ) − D(λ).

Since L(µ) is of size (n + 1) × (n + 1), we look at the spectral curve equation (11) as a
(n + 1)-sheeted cover of the µ-plane. When λ = ∞, we have two points P + and P −

corresponding to µ = ∞ and µ = 0 respectively,

P + : µ = λn+1(1 + O(λ−2)) P − : µ = λ−n−1(1 + O(λ−2)).

According to, e.g., [3, 14], the eigenvectors of L(µ) are easy to construct. Set

	 =


ψ1

ψ2
...

µ


where we have normalized the last component to be µ. The meromorphic functions ψi have
poles at the dynamical divisor; moreover

ψi = e
qi−qn+1

2 λi(1 + O(λ−1) near P +

ψi = e− qi−qn+1
2 λ−i (1 + O(λ−1) near P −.

These properties determine the functions ψi uniquely. Being meromorphic functions on a
hyperelliptic curve, we can write

ψi = Q(i)(λ) + µR(i)(λ)∏n
j=1(λ − λj )

where Q(i) and R(i) are polynomials. We want the poles to be at (λj , µj ) only so that the
numerator should vanish at the points

(
λj , µ

−1
j

)
. This gives n conditions

Q(i)(λj ) + µ−1
j R(i)(λj ) = 0 j = 1, . . . , n. (16)
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To have a pole of order i at P + and a zero of order i at P −, we choose

degree Q(i) = n − i degree R(i) = i − 1.

These two polynomials depend altogether on n + 1 coefficients. They are determined by
imposing the n conditions of equation (16) and requiring that the normalization coefficients
are inverse to each other at P ±. We set

Q(i)(λ) = Q
(i)
0 + Q

(i)
1 λ + · · · + Q

(i)
n−iλ

n−i

R(i)(λ) = R
(i)
0 + R

(i)
1 λ + · · · + R

(i)
i−1λ

i−1.

Moreover, since ψn+1 = µ, we have to define

Q(n+1)(λ) = 0 R(n+1)(λ) =
n∏

j=1

(λ − λj )

then equations (16) become

1 λ1 · · · λi−1
1 µ1 µ1λ1 · · · µ1λ

n−i−1
1

...
...

...
...

...
...

1 λj · · · λi−1
j µj µjλj · · · µjλ

n−i−1
j

...
...

...
...

...
...

1 λn · · · λi−1
n µn µnλn · · · µnλ

n−i−1
n





R
(i)
0
...

R
(i)
i−1

Q
(i)
0
...

Q
(i)
n−i−1


= −Q

(i)
n−i



µ1λ
n−i
1

...

µjλ
n−i
j

...

µnλ
n−i
n


or, with obvious notation; M(i)W(i) = −Q

(i)
n−iV

(i) and therefore W(i) = −Q
(i)
n−iM

(i)−1V (i).
In particular

R
(i)
k−1 = −Q

(i)
n−i

�
(i)
k

�(i)

where �(i) = det M(i), and �
(i)
k is the determinant of the matrix obtained from M(i) by

replacing column k by V (i). Finally, one has to impose that the leading coefficients at P± are
inverse to each other: R

(i)
i−1 = (

Q
(i)
n−i

)−1
. This gives(

Q
(i)
n−i

)−2 = eqi−qn+1 = −�
(i)
i

�(i)
.

To reconstruct the momenta, we follow [14] again. Expand

ψi = e
qi−qn+1

2 λi(1 − ξiλ
−1 + · · ·) near P +

then pi = ξi+1 − ξi . We find at once

ξi = −
n∑

j=1

λj − R
(i)
i−2

R
(i)
i−1

hence

pi = �
(i)
i−1

�
(i)
i

− �
(i+1)
i

�
(i+1)
i+1

which we complement with the boundary terms

p1 = −�
(2)
1

�
(2)
2

pn = �
(n)
n−1

�
(n)
n

+
n∑

j=1

λj pn+1 = −
n∑

j=1

pj .



310 O Babelon

We now give more explicit formulae for the determinants entering the above expressions. We
call [k] a subset of cardinality k of (1, 2, . . . , n):

[k] = (i1, i2, . . . , ik).

We write
∑

[k] for the sum over all such sets. Define

S[k] =
∏
i∈[k]

∏
j �=[k]

1

(λi − λj )
(17)

and

µ[k] = µi1µi2 · · · µik

then, we have

X(k) ≡ �(n−k)

�(n)
=

∑
[k]

S[k]µ[k] (18)

Y (k) ≡ �
(n−k)
n−k−1

�(n)
=

∑
[k]

S[k]

∑
i �∈[k]

λi

 µ[k]. (19)

We have (note that �
(i)
i = (−1)n−i�(i−1))

eqi−qn+1 = X(n−i+1)

X(n−i)
pi = Y (n−i+1)

X(n−i+1)
− Y (n−i)

X(n−i)
. (20)

It remains to check that the Poisson bracket between pi, qi is canonical. This easily follows
from

Proposition 3.

{X(k), X(l)} = 0

{X(k), Y (l)} = (k − l)θ(k − l)X(k)X(l)

{Y (k), Y (l)} = (k − l)(θ(k − l)Y (k)X(l) + θ(l − k)X(k)Y (l))

where θ(k − l) = 1 if k > l, 0 otherwise.

Instead of proving these relations directly, it is more convenient to use the quantity Z(k)

defined by

Y (k) =
(

n∑
i=1

λi

)
X(k) − Z(k) Z(k) =

∑
[k]

S[k]

∑
i∈[k]

λi

 µ[k]. (21)

Since
{∑n

i=1 λi,X
(k)

} = −kX(k),
{∑n

i=1 λi, Z
(k)

} = −kZ(k) we have to show that

Proposition 4.

{X(k), X(l)} = 0

{X(k), Z(l)} = (lθ(k − l) + kθ(l − k))X(k)X(l)

{Z(k), Z(l)} = (lθ(k − l) + kθ(l − k))(Z(k)X(l) − X(k)Z(l)).

Proof. Take the semiclassical limit of the quantum formulae below. �

Equations (20) and the above proposition provide a complete solution to the problem of
expressing the original Toda variables pi, qi in terms of the separated variables in the classical
case. We now turn to quantum theory.
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3. The quantum Toda chain

In the quantum case, analysis on the Riemann surfaces is not available. So, we try to quantize
directly the relevant classical formulae.

Quantum commutation relations are defined directly on the separated variables.

[λk, λk′] = 0 µkλk′ = (λk′ + ih̄δkk′)µk ≡ (tkλk′)µk [µk, µk′ ] = 0.

As shown in [12], the formulae (15) for the quantum Hamiltonians remain valid at the quantum
level (with the µi written on the right) and they are all commuting.

The new result of this paper concerns the variables qi, pi of the Toda chain. We show
that the classical formulae of equations (20) can also be straightforwardly quantized.

As a first step, we quantize the operators X(k) and Z(k). We define them by the same
formulae as in the classical case of equations (18), (21), but now it is important to write the
µi to the right. We have

Proposition 5.

[X(k), X(l)] = 0

[X(k), Z(l)] = ih̄(kθ(l − k) + lθ(k − l))X(k)X(l)

[Z(k), Z(l)] = ih̄(kθ(l − k) + lθ(k − l))(Z(k)X(l) − Z(l)X(k)).

Proof. We have

[X(k), X(l)] =
∑
[k],[l]

(S[k]t[k]S[l] − S[l]t[l]S[k])µ[k]µ[l]

[X(k), Z(l)] =
∑
[k],[l]

(S[k]t[k](λ[l]S[l]) − λ[l]S[l](t[l]S[k]))µ[k]µ[l]

[Z(k), Z(l)] =
∑
[k],[l]

(λ[k]S[k](t[k]λ[l]S[l]) − λ[l]S[l](t[l]λ[k]S[k]))µ[k]µ[l]

where we denoted

λ[k] =
∑
i∈[k]

λi.

We set

[k] = [k′] + [m′] [l] = [l′] + [m′] [k′] ∩ [l′] = ∅. (22)

We have∑
[k],[l]

((λ[k])
aS[k](t[k](λ[l])

bS[l]) − (λ[l])
bS[l](t[l](λ[k])

aS[k]) =
∑
[k],[l]

(−1)k
′l′

×
∏

i∈[k′+l′+m′]
j �∈[k′+l′+m′]

1

λi − λj

∏
i∈[m′]

j∈[k′+l′]

1

λi − λj

∏
i∈[m′]

j �∈[k′+l′+m′]

1

λi − λj + ih̄

×
∏
i∈[k′]
j∈[l′]

1

λi − λj

(λ[k])
a(λ[l] + ih̄m′)b

∏
i∈[k′]
j∈[l′]

1

λi − λj + ih̄

− (λ[l])
b(λ[k] + ih̄m′)a

∏
i∈[k′]
j∈[l′]

1

λi − λj − ih̄

 .
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The coefficient on the second line only depends on [k′ + l′]. Hence we can split the sum∑
[k],[l]

=
∑

[m′],[k′+l′]

∑
[k′],[l′]

and the last sum goes straight to the last line.
If a = 0, b = 0, that is in the calculation of [X(k), X(l)], the last sum vanishes by

lemma 2.
If a = 0, b = 1, that is in the calculation of [X(k), Z(l)], we set

λ[l] + ih̄m′ = λ[k′+l′+m′] − λ[k′] + ih̄k − ih̄k′

λ[l] = λ[k′+l′+m′] − (λ[k′] − ih̄k′) − ih̄k′.

By lemma 2 applied with a = 0, 1, only the ih̄k term contributes in the last sum. This term is
exactly equal to

[X(k), Z(l)] = ih̄kX(k)X(l) k < l.

If k > l, we write this time

λ[l] + ih̄m′ = (λ[l′] − ih̄l′) + λ[m′] + ih̄l λ[l] = λ[l′] + λ[m′]

and this time only the ih̄l term contributes. Hence

[X(k), Z(l)] = ih̄lX(k)X(l).

If a = 1, b = 1, that is in the calculation of [Z(k), Z(l)], we set (assuming k < l):

λ[k](λ[l] + m′ih̄) = ih̄kλ[k] − (λ[k′])
2 + (λ[k′+l′] − ih̄k′)λ[k′] + λ[m′](λ[k′+l′+m′] − ih̄k′)

λ[l](λ[k] + m′ih̄) = ih̄kλ[l] − (λ[k′] − ih̄k′)2 + (λ[k′+l′] − ih̄k′)(λ[k′] − ih̄k′)

+ λ[m′](λ[k′+l′+m′] − ih̄k′).

By lemma 2 only the terms ih̄kλ[k] and ih̄kλ[l] contribute. Hence

[Z(k), Z(l)] = ih̄k(Z(k)X(l) − Z(l)X(k)) k < l. �

It is now simple to write the commutation relations with Y (k) defined in equation (19).

Proposition 6.

[X(k), X(l)] = 0

[X(k), Y (l)] = ih̄(k − l)θ(k − l)X(k)X(l)

[Y (k), Y (l)] = ih̄(k − l)[θ(k − l)Y (k)X(l) + θ(l − k)Y (l)X(k)].

We define the quantum Toda variables as in the classical case.

Proposition 7. Let us define the quantum Toda operators as

eqi−qn+1 = X(n−i+1)

X(n−i)
pi = Y (n−i+1)

X(n−i+1)
− Y (n−i)

X(n−i)
. (23)

Then, we have

[eqi , eqj ] = 0 [eqi , pj ] = −ih̄δij eqi [pi, pj ] = 0. (24)

Proof. Note that there is no ordering ambiguity in the expressions (23). The proof of the
canonical commutation relations relies on[

1

X(k)
, Y (l)

]
= −ih̄(k − l)θ(k − l)

X(l)

X(k)
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which implies in turn[
Y (k)

X(k)
,
Y (l)

X(l)

]
= 0.

�

Equations (23), (24) constitute the main result of this paper. It is important to check
the reality of our operators. The conjugation operation on the variables λk, µk was given by
Sklyanin:

λ∗
k = λk µ∗

k =
∏
j �=k

λk − λj + ih̄

λk − λj

µk.

This conjugation rule is found by requiring that the Hamiltonians Hj be self-conjugate. It is
a simple exercise to check that the operators X(k), Y (k) are self-conjugate, and therefore so
are pi, qi .

4. Conclusion

Equations (23) open up the possibility of computing the matrix elements of these operators
between the eigenstates of the Hamiltonians Hi , see [6, 8]. The existing techniques should be
sufficient to handle operators polynomial in µi , such as

eqn−qn+1 eqn−1−qn+1 · · · eqn−k+1−qn+1 = X(k).

For the operators pi, eqi themselves, however, we will have to learn how to treat ratios of
such polynomial operators. This is an important issue since for non-hyperelliptic curves this
situation seems unavoidable [11].
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Appendix

We prove some combinatorial identities which are used in the computation of the commutators
of the operators X(k), Z(k).

Lemma 1.
n∑

i=1

∏
j �=i

1

(λi − λj )

λa
i

∏
j �=i

1

(λi − λj + ih̄)
− (λi − ih̄)a

∏
j �=i

1

(λi − λj − ih̄)

 = 0

for a � 2n.

Proof. Consider

Q(z) = za
∏

i

1

z − λi

∏
i

1

z − λi + ih̄
.

The residue at the pole z = λi reads

1

ih̄
λa

i

∏
i �=j

1

λi − λj

∏
i �=j

1

λi − λj + ih̄
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while the residue at z = λi − ih̄ reads

− 1

ih̄
(λi − ih̄)a

∏
i �=j

1

λi − λj − ih̄

∏
i �=j

1

λi − λj

.

Hence our expression is the sum of the residues of Q(z) at finite distance, which vanishes if
a � 2n. �

Lemma 2. Suppose k < n/2. Then

∑
[k]

∏
i∈[k]
j �∈[k]

1

(λi − λj )

(λ[k])
a

∏
i∈[k]
j �∈[k]

1

(λi − λj + ih̄)
− (λ[k] − ih̄k)a

∏
i∈[k]
j �∈[k]

1

(λi − λj − ih̄)

 = 0

for 0 � a � 2(n − 2k + 1). By symmetry, if k > n/2, we have

∑
[k]

∏
i∈[k]
j �∈[k]

1

(λi − λj )

(λ[n−k] − ih̄(n − k))a
∏
i∈[k]
j �∈[k]

1

(λi − λj + ih̄)

− (λ[n−k])
a

∏
i∈[k]
j �∈[k]

1

(λi − λj − ih̄)

 = 0

for 0 � a � 2(2k − n + 1).

Proof. Consider this expression as a function of λ1. It tends to zero at ∞, and it has poles at the
other λj , λj ± ih̄. Consider λ2. We have two contributions corresponding to λ1 ∈ [k], λ2 �∈ [k]
and λ1 �∈ [k], λ2 ∈ [k]. We denote by [n′] the subset of [n] where λ1 and λ2 have been
removed, by [k′] a subset of [n′] of cardinality k − 1 and by [l′] the complementary subset in
[n′]. The two contributions can be written, respectively,

A = 1

λ1 − λ2
P[l′](λ1)P[k′](λ2)

∏′
0

(
(λ1 + λ[k′])

a

λ1 − λ2 + ih̄
P[l′](λ1 + ih̄)P[k′](λ2 − ih̄)

∏′
+

− (λ1 + λ[k′] − kih̄)a

λ1 − λ2 − ih̄
P[l′](λ1 − ih̄)P[k′](λ2 + ih̄)

∏′
−

)
B = 1

λ2 − λ1
P[l′](λ2)P[k′](λ1)

∏′
0

(
(λ2 + λ[k′])

a

λ2 − λ1 + ih̄
P[l′](λ2 + ih̄)P[k′](λ1 − ih̄)

∏′
+

− (λ2 + λ[k′] − kih̄)a

λ2 − λ1 − ih̄
P[l′](λ2 − ih̄)P[k′](λ1 + ih̄)

∏′
−

)
where

P[l′](λ) =
∏
j∈[l′]

1

λ − λj

and ∏′
σ

=
∏
i∈[k′]
j∈[l′]

1

(λi − λj + σ ih̄)
σ = 0,±.
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Consider the pole at λ1 = λ2. Set λ1 = λ2 + ε.

A = 1

ε
P[l′](λ2)P[k′](λ2)

∏′
0

(
1

ih̄
(λ2 + λ[k′])

aP[l′](λ2 + ih̄)P[k′](λ2 − ih̄)
∏′

+

+
1

ih̄
(λ2 + λ[k′] − kih̄)aP[l′](λ2 − ih̄)P[k′](λ2 + ih̄)

∏′
−

)
B = −1

ε
P[l′](λ2)P[k′](λ2)

∏′
0

(
1

ih̄
(λ2 + λ[k′])

aP[l′](λ2 + ih̄)P[k′](λ2 − ih̄)
∏′

+

+
1

ih̄
(λ2 + λ[k′] − kih̄)aP[l′](λ2 − ih̄)P[k′](λ2 + ih̄)

∏′
−

)
so that A + B is regular.

Consider the pole at λ1 = λ2 − ih̄. Set λ1 = λ2 − ih̄ + ε

A = − 1

ih̄ε
P[n′](λ2 − ih̄)P[n′](λ2)(λ2 − ih̄ + λ[k′])

a
∏′

0

∏′
+

B = 1

ih̄ε
P[n′](λ2)P[n′](λ2 − ih̄)(λ2 − ih̄ + λ[k′] − (k − 1)ih̄)a

∏′
0

∏′
−

so that A + B is proportional to∑
[k′]

∏′
0

(
(λ[k′])

a′∏′
+

− (λ[k′] − (k − 1)ih̄)a
′∏′

−

)
which is our identity at a lower level.

Consider the pole at λ1 = λ2 + ih̄. Set λ1 = λ2 + ih̄ + ε.

A = − 1

ih̄ε
P[n′](λ2 + ih̄)P[n′](λ2)(λ2 + λ[k′] − (k − 1)ih̄)a

∏′
0

∏′
−

B = 1

ih̄ε
P[n′](λ2)P[n′](λ2 + ih̄)(λ2 + λ[k′])

a
∏′

0

∏′
+

so that A + B is proportional to∑
[k′]

∏′
0

(
(λ[k′])

a′∏′
+

− (λ[k′] − (k − 1)ih̄)a
′∏′

−

)
which is our identity at a lower level. So, if the identity holds at lower levels, our expression,
as a rational function of λ1, is regular everywhere and tends to zero at ∞, hence identically
vanishes. Since the identity is true for k = 1 by lemma 1, it is true as stated. �
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